Once upon a time, scientists believed that our DNA was our destiny. In 1942, Conrad H. Waddington, a British developmental biologist, embryologist and geneticist at Cambridge University, overturned this construct and coined the term “epigenetics” to capture the complex, dynamic interactions between nature and nurture in influencing human biology.
Epigenetics is the science behind how our experiences and behavior interact with our genes. Every cell in our body contains the same DNA. What makes one cell different from another has to do with which genes, the building blocks of our DNA, are turned on. Our genes are constantly being turned on and off, which is one of the reasons why lifestyle can have such a powerful influence on our health.
In this edition, we'll uncover how the same mechanism that makes queen and worker honey bees completely different — even though they are genetically identical — may offer us the possibility of living longer.
I will preface this by saying that the field of epigenetics is large and ever-evolving (some of the studies I've cited are hot off the presses) and that I just barely scratch the surface in this post. I'd encourage you to check out the resources I've shared below to learn more.
What is Epigenetics and Why Should I Care?
Epigenetics affects your gene expression. Epigenetic markers are chemical compounds that are added to genes to regulate their activity. While these modifications do not change the DNA sequence itself, epigenetics affects how cells "read" genes and how they decide which proteins to produce. Although not part of the DNA sequence, they're found on top of or attached to DNA (“epi-” means above in Greek). In contrast to the human genome, the epigenome represents the entire collection of the biological switches that control gene expression and whether genes are expressed or silenced. (Source)
It's why a skin cell looks different from a muscle cell. As human beings, we have trillions of cells that are specialized for different functions — thanks to epigenetics! Even though all cells in the human body contain the same DNA, parent cells use epigenetic marks to signal to their daughter cells what cell type they will become and what types of proteins to create. Specialized cells in the eye, for example, are marked to produce proteins that can detect light, while red blood cells are marked to produce proteins that carry oxygen. (Source, Source)
It plays a role in human disease. While epigenetic changes are necessary for normal development and health, they can be responsible for diseases as well. Errors in the epigenetic process can lead to abnormal gene activity or inactivity, resulting in conditions including various cancers, metabolic disorders, immune disorders, and degenerative disorders. (Source)
Our epigenome is malleable. From a molecular point of view, there are at least three systems within cells that turn genes on or off: (1) DNA methylation, (2) histone modifications, and (3) non-coding RNA mechanisms. Because the effects of epigenetic mechanisms can be reversed, learning how to modify them is becoming an attractive therapeutic target. Environmental exposures, such as your diet and exposure to pollutants, can also impact the epigenome. (Source)

💡 Quick biology refresher: Thinking back to your high school biology class, you might remember that DNA does not exist as a naked molecule. DNA is tightly coiled around proteins called histones, which are collectively known as “chromatin” and look like beads on a string. Genes are marked with chemical tags called methyl groups, signaling the proteins in the cell to process those parts of the DNA in certain ways. If you think of your DNA sequence like an instruction manual, epigenetic markers operate similar to highlighters, underscoring certain parts of the text that are more important with one color and marking others that are less critical with a different one. (Source)
What Does the Research Show About the Epigenome?
Mother's epigenome knows best. A new study shows fruit fly moms help their offspring survive by passing along instructions encoded in their epigenomes, suggesting that active epigenetic modifications may be inherited across generations. While this has been shown to be the case in non-mammals, it's still somewhat debated whether or not this happens in humans. (Source)
Plants pass on “memory” of stress to some offspring, making them more resilient. According to Penn State researchers, by manipulating the expression of one gene, geneticists can induce a form of “stress memory” in plants that is passed along to future offspring, resulting in hardier, more resilient plants. (Source)
Stress and trauma may result in increased epigenetic aging. A study found that childhood abuse and other forms of trauma seem to affect DNA methylation patterns, which may explain why those who experience childhood abuse are at increased risk for disease in adulthood. (Source, Source)
High-sugar diet may epigenetically affect sperm quality. Researchers at Linköping University examined the epigenetic effects that a man’s diet can have on sperm health. They found just one week of a high-sugar diet caused a reduction in sperm motility. (Source)